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Abstract—Active vision aims to enhance the efficiency of com-
puter vision methods by enabling the capturing sensor, usually
placed on a robot or, more generally, an autonomous system,
to dynamically adjust its viewpoint, position or parameters
in real-time. This capability allows for more precise decision-
making by the model. However, training and evaluating an
active vision model often necessitates a substantial number of
annotated images, which must be captured under various sensor
and environmental settings. These diverse images enable the
model to learn the underlying dynamics of the active perception
process. Unfortunately, collecting and annotating such datasets is
a challenging and expensive task. It involves not only providing
hand-crafted ground truth annotations but also ensuring that
actions, such as moving around / towards / away from a person,
are properly ”imitated” to enable active vision approaches to
model the corresponding active perception dynamics. To address
these limitations, in this paper we propose a synthetic facial
image generation pipeline specifically designed to support active
face recognition, developed using a highly realistic simulation
framework based on Unity. The developed pipeline allows for
the generation of facial images for a set of persons at various
view angles, distances, illumination conditions, and backgrounds.
We demonstrate the effectiveness of our approach by training
and evaluating a recently proposed embedding-based active face
recognizer, as well as extending it to perform 2 axis control,
leveraging the additional information provided by the generated
dataset. To facilitate replication and encourage the use of the
generated dataset for training and evaluating other active vi-
sion approaches, we also provide the associated assets and the
developed dataset generation pipeline.

Index Terms—Active Vision, Synthetic Data Generation, Unity,
Face Recognition

I. INTRODUCTION

Active vision is a field of computer vision that was inspired
by our ability to move around in our environment in order
to get a better view or understanding of our surroundings.
Active vision aims to improve the efficiency of traditional
computer vision methods by allowing the capturing sensor(s),
placed on an autonomous system such as a robot, to alter their
viewing position, direction or parameters in real-time so that a
model can make better decisions about the subject of interest.
Models that employ this approach can be used in a multitude
of computer and robotic vision tasks, such as face and object
recognition/detection, human pose/posture estimation and have
been shown to be faster [1], smaller [1], [2] and more accurate
[1], [2], [11], [12] than models that utilize a static approach.

While there is an abundance of datasets containing millions
of annotated images that are being used in numerous computer
and robotic vision tasks, datasets suitable for active vision
problems are rather limited. Training and evaluating an active
vision model often requires the use of hundreds of thousands,
or even millions of annotated images captured at various
sensor and environmental configurations in order to learn the
dynamics that govern the active perception process. At the
same time, collecting and annotating such datasets is a difficult
and costly process that involves not only providing handcrafted
ground truth annotations but also ensuring that actions such as
moving around or towards a person, are appropriately modeled
or imitated. Two notable examples of datasets that can support
active vision tasks are the ModelNet [3] and Active Vision [4]
datasets which can both be used in active object detection
and recognition. ModelNet consists of more than 150,000
3D CAD model images at various angles for 161 object
categories, while the Active Vision Dataset is comprised of
more than 30,000 RGBD real-world images for 15 different
scenes, accompanied by more than 70,000 2D bounding box
annotations. In terms of face detection/recognition tasks, there
have been instances where active vision models were trained
using smaller datasets, such as the HPID [5], or Head Pose
Image Database, dataset [1]. However, these datasets are rather
limited in size. As an example, the HPID dataset consists of
merely 2,790 facial images, significantly restricting, as a result,
the use of such models in practice.

In recent years, there have been a few attempts towards
synthetic annotated dataset generation frameworks that have
been used in various computer and robotic vision tasks,
including active vision. Two notable examples are BlenderProc
[6], an open-source extension of Blender [7] that provides
a modular procedural pipeline able to generate realistic an-
notated synthetic images, and Nvisii [8], which allows the
generation of synthetic path-traced photorealistic images with
the ability to produce metadata such as 2D/3D bounding boxes,
segmentation masks, optical flow vectors, etc. However, these
frameworks lack in terms of simulation realism and/or physics
compared to more recent engines, e.g., Unity’s Perception
package [13].

Another valid approach for training and testing active vision
methods is the use of photorealistic simulators for autonomous



systems, robots or embodied AI such as Habitat-Sim1. For
example, a real-time active vision humanoid soccer robot was
trained and evaluated in a simulation environment by Khatibi
et al. [10] using deep reinforcement learning, demonstrating
how using a simulation environment can indeed be very effec-
tive in active vision tasks. However training and testing of such
algorithms upon appropriate image/ video datasets is often
easier, at least at the first stages of algorithm development,
since it spares the handling of the robot motion.

Motivated by the aforementioned observations, in this paper,
we introduce a realistic synthetic facial image generation
pipeline, using a modified version of Unity’s Perception pack-
age [13] installed on a URP project, that has been designed
to support active face recognition. The developed pipeline
enables generating images under a wide range of different view
angles and distances, as well as under different illumination
conditions and backgrounds. Some examples of the synthetic
images contained in the generated dataset, called ActiveFace,
are shown in Fig. 1. Furthermore, we also employ and extend
an embedding-based active face recognizer [1] to demonstrate
the usefulness of the generated dataset. Using the proposed
extension it is possible to provide 2 axis control for active face
recognition, going beyond the initial method and achieving
superior results. The dataset, the associated assets and the
dataset generation pipeline are publicly available at https:
//github.com/opendr-eu/datasets in order to allow anyone to
seamlessly replicate them, as well as use the generated dataset
for training and evaluating other active vision approaches.

The rest of the paper is structured as follows. First, the
dataset generation process is introduced in Section II along
with a detailed description of how the proposed dataset is
generated. Subsequently, the active vision method used to
evaluate the facial image dataset is presented in Section III,
followed by an extensive experimental evaluation provided in
IV. Finally, conclusions are drawn and suggestions for further
development of the proposed dataset generation pipeline are
discussed in Section V.

II. DATASET DESCRIPTION

The dataset generation process can be described by a
sequence of nested for-loops, as shown in Algorithm 1. For
a given set of possible environments E , human models H
and lighting conditions L the algorithm iterates over all
possible combinations and captures different views by varying
the camera angle and distance from the given human. The
generated dataset was constructed using free environmental
assets and human models downloaded from the Unity Asset
Store, Maximo and Turbosquid, as well as human models
created using MakeHuman. The Unity Perception package
project was set up in such a way that anyone can add a new
environment or human without requiring any change to the
scripts that are responsible for changing the environmental or
sensor configurations of each captured image (randomizer).

1https://github.com/facebookresearch/habitat-sim

Algorithm 1 : Dataset generation algorithm.

for each environment E in E do
for each human H in H do

for each lighting condition L in L do
for each camera position P from [1m − 4m] in
increments of 0.5m do

for each camera angle Θ from [0 − 360] in
increments of 10 degrees do

Capture and output images and metadata
end for

end for
end for

end for
end for

First, we captured 1600× 900 images of every valid com-
bination of 8 environments, 33 humans, 4 lighting conditions,
7 camera distances and 36 camera angles, where the human
is always at the center of the image, as shown in Fig. 2. A
combination is rendered invalid if the camera collided with
another object. The aim is to emulate robot motion in all pos-
sible (and “allowable”, see below) locations around a human,
under various lighting conditions, thus simulating different
times of a day, in realistic environments. The environments
are meant to simulate various rooms (living room, bedroom,
kitchen) and include furniture such as tables, chairs, beds etc.
Due to the existence of these furniture, not all locations in
a room are accessible by the camera-equipped robot. Thus,
the dataset does not contain images from such inaccessible
locations, occupied by furniture.

Out of the 33 humans, 17 are females (1 infant and 16
adults), while the remaining 16 are males (1 infant and 15
adults). After capturing the initial images, the final dataset
was created by cropping only the face regions. A total of
of 175, 428 RGB facial images were created through this
procedure, as shown in Fig. 1.

III. ACTIVE FACE RECOGNITION

In this work we build upon the embedding-based active face
recognition method presented in [1] in order to a) extend it
by supporting control in one additional axis and b) evaluate
the proposed dataset generation pipeline and demonstrate its
effectiveness. This method was shown to yield much better
recognition results than the ones achieved when using a static
perception approach, since it takes advantage of a robot’s
ability to interact with its environment in order to get a more
informative view of the person’s face. This is achieved with
the use of a trainable controller which, when given an image
x(t) at a time t, dictates the controller to move towards a
certain direction in order to acquire a new image which offers
a better frontal view of the person. The new image is given
by:

x(t+1) = v(at, t), (1)

where v(·) denotes the current environment. at = gθc(x
(t))

represents the trainable controller, where θc denotes a set of
trainable action parameters.

https://github.com/opendr-eu/datasets
https://github.com/opendr-eu/datasets


Fig. 1: Examples of images generated using the proposed approach. Note that lower resolution images correspond to larger
distances between the person and the camera.

Fig. 2: Raw generated RGB image examples (before performing cropping).

The model is comprised of two modules, the feature ex-
tractor model fθr (·), which learns discriminative embeddings
of a given face image, thus being able to separate the rep-
resentations extracted from images that belong to different
persons, and the controller model gθc(·) which is responsible
for learning the best possible action that the robotic system
should take next in order to acquire a better view of a person’s
face.

When an unseen image is given as input during the eval-
uation process and the controller has given the appropriate
control commands to the robotic system, the id of the person is
obtained using the 1-nearest neighbor approach on a database
that contains frontal and nearly frontal facial images for every
person.

Instead of using reinforcement learning when training the
controller, the model executes all possible control actions at
the same time and calculates the recognition accuracy of each
of the obtained images, improving learning efficiency [1]. The
action that led to the lowest distance between the representa-
tion of the current face and the correct face is retained and
used to train the controller. The optimal action when given an

image xi and a correct image xp is given by:

d
(a)
i = argmin

k∈0,1,2,...,n
||f(xik)− f(xp)||2, (2)

where n is the total number of possible actions that the
controller can choose.

The loss function that the controller aims to minimize is
given by:

Lg =

N∑
i=1

Lx(gθc(xi), d
(a)
i ), (3)

where Lx represents the cross-entropy loss function. The
feature extractor, on the other hand, aims to minimize the
following loss function:

Lf =

N∑
i=1

N∑
j=1,j ̸=i

Le(fθr (xi), fθr (xj), dij), (4)

where the the binary variable dij ∈ {0, 1} denotes whether the
i-th face image belongs to the same person as the one depicted
in the j-th face image and Le is a loss that encourages the
separability of different face embeddings. In this work we use
the contrastive loss, as suggested in [1], which is minimized



when embeddings that belong to the same identity are as close
as possible, while the representations of face images that do
not belong to the same person maintain at least a distance of√
m:

(5)Le(yi,yj , dij) = dij ||yi − yj ||22 +
(1− dij)max(0,m− ||yi − yj ||22),

where yi = fθr (xi) is the representation extracted from the
face recognition model and ||·||2 refers to the l2 norm of a
vector. The final loss of the model is given by the sum of (3)
and (4):

L = Lg + Lf (6)

The model uses the Adam optimization algorithm with initial
learning rates ηr = ηc = 10−3 for the feature extractor and
controller, respectively.

We also appropriately modified the aforementioned ap-
proach to allow for an extra Front (i.e., towards the subject)
movement/action of 0.5m per move in order to take advantage
of the range of camera-subject distances provided by the
dataset generated in this work. The Left and Right actions
dictate the controller to move by 10 degrees either to the
left or to the right, respectively, in a circle centered at the
human subject. Since the classes involved in (3) are not
balanced, different weights were used for different classes.
More specifically, the Stay action was given a action weight
of 0.01, while both the Left and Right ones were given a
weight of 1 and the Front was weighted by 1.2.

Since the dataset does not contain, due to the existence
of furniture, images from every camera/robot position, it was
observed that the model was not always able to find an existing
image for every available action. As each environment had
missing images at different camera distances and angles (i.e.,
for the locations occupied by the furniture) and the model
could learn to avoid collisions for environments that do not
require such actions, it was decided to not train the model
for any image where any of the left, right or front images
are missing. During inference, the controller chooses the best
action that leads to an image that exists. If for a given image
there are no left, right or front images the controller dictates
the robotic system to stay in place. In a real-world scenario, the
controller would output different actions, from most optimal
to less optimal, until the robotic system could move towards
the best available spot.

IV. EXPERIMENTAL EVALUATION

Details for the experimental evaluation are provided in this
Section. First, the experimental setup that was used for training
each model upon the facial image dataset is presented. Then,
both the static (i.e. the approach that decides on the person’s
identity using the initial image) and the extended active vision
methods are evaluated using various configurations and the
experimental results are discussed.

A. Experimental Setup

The active vision model was evaluated on both the entire
face image dataset (Set 1) and on a subset (Set 2) of the
dataset containing only facial images with a pan range of −90◦

to 90◦ (0◦ corresponds to frontal view). In both cases, the
training set consisted of 22 subjects, while the remaining 11
were used to evaluate the trained model. For those 11 subjects,
all the frontal and nearly frontal (−10◦ to 10◦) images at 1m
distance away from the human, for every environment, lighting
condition, were added to the recogniser database, while the
remaining ones were used for testing the trained model, i.e.,
they were used as images captured at the starting location
of the robot. All images were resized to 96 × 96 and all
experiments were conducted 5 times using different random
seeds and the mean and standard deviation of their accuracy
scores was recorded. For each dataset (Sets 1 and 2) both
a static and an active vision model were trained in order to
evaluate the increase in accuracy when using the latter method.
It is expected that the network will perform worse on the entire
dataset (Set 1) compared to its accuracy score on the −90◦

to 90◦ subset (Set 2), since the model may not even detect
a face for extreme pan values and large distances. The active
model was first pretrained without the control branch and then
trained simultaneously on both the feature extractor and the
control branch.

The static vision model was trained for 5, 10, 20 and 30
epochs for both datasets. The active model was trained for 10
(5 for the feature extractor and 5 for both branches), 20 (10
for the feature extractor and 10 for both branches) and 30 (15
for the feature extractor and 15 for both branches) epochs for
both datasets. Moreover, the active vision model was evaluated
for 30 control steps, which would essentially allow the robotic
system to move to any location in an environment. This way,
the recognition accuracy ceiling of the model for both datasets
will be reached.

Finally, the active model was also trained and evaluated
without the addition of the extra Front action in order to
demonstrate how allowing the robotic system to move towards
the subject can result in an increase in inference performance.

B. Experimental Results

The evaluation results are shown in Tables I, II and III. As
a reninder, Set 1 represents the full facial image dataset, while
Set 2 denotes the dataset with the reduced pan range.

TABLE I: Static vision model evaluation.

Model Accuracy (Set 1) Accuracy (Set 2)

Static (5 epochs) 51.1± 4.2% 60.3± 1.5%
Static (10 epochs) 47.9± 4.2% 58.1± 3.5%
Static (20 epochs) 44.9± 2.4% 57.9± 2.9%
Static (30 epochs) 44.3± 2.2% 58.5± 2.8%

Evaluation results for the static model are presented in Table
I. Clearly, the models perform best when trained for 5 epochs,
reaching accuracy scores of ∼51.1% and ∼60.3% for Set 1



TABLE II: Active vision model evaluation with the additional
Front movement/action.

Model Accuracy (Set 1) Accuracy (Set 2)

Active (10 epochs) 67.9± 6.8% 76.9± 6.5%
Active (20 epochs) 69.2± 7.6% 79.1± 1.7%
Active (30 epochs) 67.4± 8.6% 78.3± 6.8%

TABLE III: Active vision model evaluation without the addi-
tional Front movement/action.

Model Accuracy (Set 1) Accuracy (Set 2)

Active (10 epochs) 60.3± 6.4% 66.4± 7.3%
Active (20 epochs) 55.5± 1.9% 66.6± 6.8%
Active (30 epochs) 59.1± 4.4% 72.1± 3.2%

and Set 2, respectively. Increasing the number of epochs seems
to cause an overfit of the model on the training data.

Once the active approach is employed, a substantial increase
in prediction accuracy can be observed for both datasets by
a maximum of ∼18.1% and ∼18.8%, respectively, as seen
in Table II. Since we introduce more parameters, the models
can be trained for more epochs and seem to overfit when the
number of epochs is set to 30 (15 for the feature extractor
and 15 for both branches). Evidently, the ability to train the
robotic system to move within its environment in order to get
a more informative view of the subject, namely a view which
is closer to the frontal or nearly frontal views that the system
has learned to recognize, yields much better face recognition
results. Furthermore, once the controller’s Front movement
is removed (Table III) the model is ∼8.9% and ∼7% less
accurate than the one with the additional Front action, when
comparing the highest recorded prediction accuracy scores of
each respective conducted experiment. This clearly demon-
strates that allowing the model to move in more directions,
i.e., not only around but also towards the subject, can further
increase its ability to recognize faces.

Figure 3 depicts an example of how the the control branch
has learned to change its viewpoint in order to get a better
(more closer and towards a frontal position) view of the person
depicted in the original image, that is, the one obtained from
the initial robot location. The original image is obtained from
point a (starting position for the robot) and then the robot
moves along the depicted path until it reaches a frontal view
of the subject’s face at a distance of 1m (point h). We can
observe that, generally, at larger distances the controller prefers
to make a Front movement in order to move closer to the
subject and, thus, increase the captured facial image resolution.
Once the image is clear enough, it then makes either Left or
Right movements in order to move in front of the subject.

V. CONCLUSIONS

In this paper, a synthetic realistic data generation pipeline
for training and evaluating active face recognition methods
using Unity’s Perception package was introduced. One dataset
was generated using this pipeline, consisting of face images,
cropped from the originally captured 1600 × 900 images.

The facial images were used to train and evaluate both a
static and active vision embedding-based face recognizer in
order to demonstrate how employing an active approach can
significantly increase the prediction accuracy of a static model.
The experimental results showed an substantial increase in
recognition performance when comparing the static to the
active model by a maximum of ∼ 18.8%. Additionally, we
demonstrated that, by enabling the robotic system to move
towards the subject, thus not being limited to left or right
movements as in [1], yields better recognition accuracy scores
by a maximum recorded difference of ∼ 8.9%. One limitation
of this work, however, was that the trained model could not be
evaluated on real faces, since, to the best of our knowledge,
no face image dataset that can support left, right and front
movements in equally-sized increments exists.

The proposed data generation pipeline allowed for the fast
generation of an annotated realistic synthetic dataset which
can be successfully used for training and evaluating face
recognition methods, including active ones. However, there
are numerous ways in which the presented pipeline can be
improved. First, the pipeline can be easily modified to generate
a dataset depicting the entire environment including full-body
depictions of the subjects and annotations such as bounding
boxes for the subjects and furniture, semantic segmentation
ground truth etc. Such a dataset is indeed in the final stage
of construction. Moreover, the inclusion of additional envi-
ronments, both indoors and outdoors, as well as the ability
to manipulate other lightning sources apart from each en-
vironment’s directional light would increase the number of
training samples as well as the image variety of the dataset.
Additionally, a more advanced randomization approach that
can place objects in front of the human subject could allow
for more robust models that can deal with occlusions. Also,
the dataset could be extended in order to be usable for active
human pose or activity recognition by enabling the Unity
project’s options for playing and switching between different
animations. Furthermore, the Unity project could be converted
to Unity’s HDRP which would allow for much more realistic
and high quality rendered images in 2K or even 4K resolution.
Finally, in terms of improving the active vision method itself,
the implementation of obstacle avoidance may result in both
higher prediction accuracy and a more robust model.
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